
A Framework for Modeling and Simulation of
the Artificial

Scott A. Douglass and Saurabh Mittal

Abstract Artificial systems that generate contingency-based teleological behaviors
in real-time, are difficult to model. This chapter describes a modeling and sim-
ulation (M&S) framework designed specifically to reduce this difficulty. The de-
scribed Knowledge-based Contingency-driven Generative Systems (KCGS) frame-
work combines aspects of SES theory, DEVS-based general systems theory, net-
centric heterogeneous simulation, knowledge engineering, cognitive modeling, and
domain-specific language development using meta-modeling. The chapter outlines
the theoretical and technical foundations of the KCGS framework as realized in the
Cognitive Systems Specification Framework (CS2F), a subset of KCGS. Two exe-
cutable models are described to illustrate how models of autonomous, goal-pursuing
cognitive systems can be modeled and simulated in the framework. The technical
content and agent descriptions in the chapter illustrate how the M&S of the artificial
depends critically on ontology, epistemology, and teleology in the KCGS frame-
work.

1 Introduction

This chapter describes the Cognitive Systems Specification Framework (CS2F),
as a subset of Knowledge-based Contingency-driven Generative Systems (KCGS)
framework; a modeling and simulation (M&S) framework designed to support the
M&S of models, agents, and cognitive systems capable of autonomously designing
their own behavior in real-time. The CS2F framework is based on advances made

Scott A. Douglass, PhD
Air Force Research Laboratory, 711 HPW/RHAC, 2620 Q Street, Bldg 852, Rm 3-331, WPAFB,
OH 45433-7955 e-mail: scott.douglass@wpafb.af.mil

Saurabh Mittal, PhD
L-3 Communications, 2620 Q Street, Bldg 852, Rm 3-327, WPAFB, OH 45433-7955 e-mail:
saurabh.mittal@l-3com.com

1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2012 2. REPORT TYPE

3. DATES COVERED
 00-00-2012 to 00-00-2012

4. TITLE AND SUBTITLE
A Framework for Modeling and Simulation of the Artificial

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory,711 HPW/RHAC,2620 Q Street, Bldg
852, Rm 3-331,Wright-Patterson AFB,OH,45433-7955

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Chapter from the Book: Ontology, Epistemology, and Teleology of Modeling and Simulation Editor, Dr.
Andreas Tolk, Series: Intelligent Systems Reference Library, (Springer-Verlag, Germany),2012

14. ABSTRACT
Artificial systems that generate contingency-based teleological behaviors in real-time, are difficult to
model. This chapter describes a modeling and simulation (M&S) framework designed specifically to reduce
this difficulty. The described Knowledge-based Contingency-driven Generative Systems (KCGS)
framework combines aspects of SES theory, DEVS-based general systems theory, netcentric heterogeneous
simulation, knowledge engineering, cognitive modeling, and domain-specific language development using
meta-modeling. The chapter outlines the theoretical and technical foundations of the KCGS framework as
realized in the Cognitive Systems Specification Framework (CS2F), a subset of KCGS. Two executable
models are described to illustrate how models of autonomous, goal-pursuing cognitive systems can be
modeled and simulated in the framework. The technical content and agent descriptions in the chapter
illustrate how the M&S of the artificial depends critically on ontology, epistemology, and teleology in the
KCGS framework.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

46

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2 Scott A. Douglass and Saurabh Mittal

in System Entity Structure (SES) theory [43], the Discrete Event Systems (DEVS)
Unified Process [18], and large scale cognitive modeling (LSCM) research initia-
tive [5, 20, 21].

The chapter begins with a discussion of a modeling problem the framework is
intended to solve. The problem boils down to the present difficulty of modeling
and simulating autonomous cognitive systems. The CS2F framework is intended to
decrease this difficulty. Section 2 describes artificial systems and the artificial phe-
nomena they produce. This section argues that autonomous models and agents are
difficult to specify because: (1) they produce artificial phenomena; phenomena that
reflect contingencies, choice, and teleology; (2) current modeling frameworks lack
comprehensive support for the formal specification of relationships between contin-
gencies, choices, and goals. Section 3 presents the CS2F framework and discusses
the modeling formalisms and net-centric simulation technologies that constitute it.
This section describes the framework as a componentized environment in which
artificial phenomena can be readily modeled and simulated. After describing the
framework, the chapter illustrates how models of artificial phenomena are actually
specified and executed. Section 4 describes two agents: one that learns to adjust its
behavior to match the probability structure of the environment; and another that uses
abduction, a type of inference that refines knowledge, to make sense of its situation.
While these agents are simple to facilitate exposition, they clearly demonstrate how
the CS2F framework is used to model and simulate artificial phenomena. In Sec-
tion 5, the broader theoretical background and ambition of the KCGS framework
are presented. In Section 6, the chapter finally argues that the framework’s effec-
tiveness can be traced to the integration of aspects of ontology, epistemology, and
teleology into modeling and simulation.

1.1 The Problem

Cognitive scientists employing computational process modeling in their research
consider cognitive activity to be a product of an open system that interacts with the
environment [41]. This perspective has motivated many cognitive scientists, espe-
cially those in the information processing psychology and cognitivist research tra-
ditions, to study cognitive architecture, the structural and behavioral system proper-
ties underlying cognitive activity that remain constant across time and situation. The
Adaptive Character of Thought-Rational (ACT-R) is a theory of human cognition in
the form of a cognitive architecture [2]. While cognitive modeling frameworks such
as ACT-R allow cognitive scientists to explain/predict activities and processes oc-
curring within an invariant architecture, they say little about how the influences of
situational contingencies in which cognition occurs should be formally captured and
related to behavior.

Let a program be sequence of instructions that perform a task when executed.
Let an agent be something that perceives and acts. Agents can act on the basis
of: (1) contingencies; (2) built-in knowledge; or (3) a combination of contingen-

A Framework for Modeling and Simulation of the Artificial 3

cies and built-in knowledge. Let an autonomous agent be one that bases its actions
on its contingencies. Let acting rationally be given beliefs, acting so as to achieve
goals. Cognitive scientists are struggling to develop cognitive models that behave
more like autonomous rationally acting agents than programs. To be autonomous,
an agent must base its actions on the constraints and affordances of its situation. A
key consequence of this dependence on situational factors is that the contingencies
an autonomous agent acts in (factors outside the invariant architecture) play as im-
portant a role in determining its actions as its invariant architecture. Autonomous
rational agents are difficult to develop because the broader system in which con-
tingencies and cognitive activity mesh must be represented and processed by the
agent.

1.2 The Solution

AFRL efforts to resolve the above problem have produced a Cognitive Systems
Specification Framework (CS2F), as a subset of the proposed KCGS framework.
CS2F combines modeling formalisms (or Domain Specific Languages) in which
models of systems that produce artificial phenomena can be specified. The KCGS
framework provides a metamodel-based computing infrastructure wherein the CS2F
modeling formalisms can be formally anchored in DEVS component-based systems
specifications and ultimately simulated. The following aspects of the KCGS frame-
work execute in concert to computationally realize the modeling and simulation of
artificial systems as realized in CS2F:

1. Domain specific languages (DSLs) allowing modelers to formally specify the
structure of knowledge related to; the environment, agent behaviors, states, goals,
and domain theories. These DSLs allow domain experts to provide collaborative
input in a larger systems context wherein heterogeneous components and multi-
ple implementation platforms are the norm.

2. DSLs that use hierarchy to manage complexity in systems consisting of a large
number of entities. These DSLs capitalize on formal properties of DEVS related
to closure under coupling and the formal systems specification of hierarchy.

3. DSLs that use domain abstractions to limit specification and computational com-
plexity during the specification and simulation of artificial systems.

4. Model-to-model transformation technologies that formally transform model com-
ponent specifications in DSLs into executable DEVS systems-models. These ex-
ecutable models combine modeled aspects of both agents and their environments.

5. Knowledge processing mechanisms that refine knowledge while the system is in
operation. These processes occur during simulation and allow agents to generate
effective action and learn.

6. Capabilities based on variable structure modeling that support structural change
in the system in operation. These capabilities change an agent’s behavioral reper-
toire so that it reflects the dynamism and contingencies of the environment.

4 Scott A. Douglass and Saurabh Mittal

7. Capabilities based on event-based modeling that inject new knowledge into an
autonomous agent at runtime. These capabilities support the learning and adop-
tion of new knowledge.

The CS2F framework is designed to allow modelers to combine state, goal, and
domain knowledge in cognitive domain ontologies (CDO) and simulate artificial
phenomena in DEVS. These abilities allow cognitive scientists to model and simu-
late cognition as an artificial phenomenon contingent on situational factors, guided
by a library of cognitive capacities (or behavior repertoire) and runtime constraints
that operate between the agent and its environment.

2 Artificial Systems

In a review of embodied cognition, Wilson [41] proposes that science should study
systems that are essentially permanent in structure; systems whose behaviors are in-
variant across situations. Underlying Wilson’s proposition is a notion that if science
is to understand and predict systems and processes in nature it must focus on, and
model, fundamental principles of organization and function, not the behaviors of
systems in specific situations. Put another way, when the specification of a scientific
model appeals to situation-specific factors, scientists cannot predict the behavior
of the model when the situation changes. Wilson illustrates the importance of fo-
cusing on the invariant aspects of studied systems by pointing out how scientific
understanding of hydrogen is based on fundamental understanding of atoms, not
understanding of how hydrogen behaves in a large number of contexts. Wilson sug-
gests that scientists working to understand how cognition is situated or embodied
are straying from a preferred focus on system behaviors that are invariant across
situations. Put another way, rather than studying cognitive activity in specific situa-
tions, cognitive scientists should study cognitive architecture, the invariant structural
and behavioral system properties underlying cognitive activity that remain constant
across time and situation.

2.1 Artificial Phenomena

The “Achilles’ heel” of Wilson’s proposition is the obvious fact that human behavior
is quite different from the behavior of hydrogen. Simon [35] draws out this differ-
ence by contrasting natural phenomena with artificial phenomena. Natural phenom-
ena (for example, the behavior of hydrogen) are based on necessity; the behaviors of
systems producing natural phenomena are subservient to natural law. Artificial phe-
nomena (for example, the goal-pursuing actions of a human) are based on contin-
gency; the behaviors of systems producing artificial phenomena are improvisational
and reflect choices and requirements. Cognitive scientists endeavoring to model au-
tonomous models and agents should develop theories and methods that enable them

A Framework for Modeling and Simulation of the Artificial 5

to understand cognition as an artificial phenomenon profoundly influenced by situ-
ational factors and contingencies. This chapter illustrates how knowledge about sit-
uational factors and contingencies can be represented in ontologies and processed
by teleological (goal-pursuing) agents in order to refine their knowledge and gain
real-time behavioral autonomy.

2.2 State and Process Descriptions

Simon [35] argued that two representations of knowledge underlie artificial human
behavior: state description knowledge and process description knowledge. Humans
generate/design effective behaviors by posing and solving problems that link their
goals to the actions they can take. They pose the problems by clarifying state de-
scriptions of their goals and then solve the problems by discovering sequences of
actions or processes that produce their goal states. We propose that for an agent to
act autonomously, it must be able to convert state descriptions (representations of
goals) into process descriptions (representations of actions). Specifically, an agent
must be able to determine: (1) what actions are likely to achieve goals; and (2) how
to perform these actions.

While it may be straight forward to specify how an agent is to perform actions
using sequences of instructions (a program), it is extremely difficult to specify how
an agent is to autonomously determine what it should do in its circumstances. This
difficulty is partly due to the way answering the what question takes place in situ; in
the confluence of situational constraints, current goals, perceived possible actions,
cognitive limitations, preferences, etc. It is virtually impossible to specify all the
ways contingencies shape actions in a model consisting of built-in rules. To develop
autonomous agents that pursue goals in unpredictable environments, cognitive mod-
elers need modeling formalisms and frameworks with which they can specify and
execute models and agents that “soft-assemble” their actions. These formalisms and
frameworks must allow modelers to separate the what and how concerns so that
answers to the what question can be used to assemble sequences of instructions or
rules that answer the how question in situ. This chapter describes formalisms and an
execution framework meeting these requirements.

2.3 Modeling Artificial Systems

Modeled as intelligent artificial system, autonomous agents pursue goals while in-
teracting with the environment and dealing with their contingencies. Such an au-
tonomous agent must be able to situate itself in the environment, perceive the con-
straints and affordances of the moment, and relate contingencies to goals in order
to take effective action. In order to design such an autonomous artificial system, the
Modeling and Simulation discipline must be able to formally specify the structure

6 Scott A. Douglass and Saurabh Mittal

of the domain of the agent. Unless we formally specify the entire agent/contingency
environment, the behavior specification of the agent will be fragile in the face of
events occurring in the environment not anticipated by pre-defined rules. This im-
plies that we should model the whole environment and a rich behavior representa-
tion of such an agent situated in it. This certainly is computationally prohibitive and
better methods of managing such information are being developed by the chapter
authors.

3 CS2F Framework for Modeling and Simulating Artificial
Systems

This section describes technologies and a framework for specifying, modeling and
simulation of artificial systems. It addresses concepts like model interoperability,
model transparency, domain specific languages, formal ontology representation,
knowledge engineering, search mechanisms and their integration aspects. We begin
this section by describing meta-modeling as a necessary aspect of model interoper-
ability. Meta-models are abstract models of the domain of interest and result in a
set of rules that define a “domain-model”. Performing model transformations at the
meta-modeling layers paves way for model integration and collaborative develop-
ment. In the next subsection, we will discuss how meta-models are transformed to
the DEVSML stack to make them executable. It should be noted that the models are
not “executable” by design at the meta-modeling layer. They have to be transformed
to a framework (DEVS in this case) that takes models and makes them executable
(as a simulation). This separation of concerns is a central theme in DEVS based
modeling and simulation that separates the modeling and simulation layers using a
simulation relation.

3.1 Foundations of the CS2F Framework

3.1.1 Meta-Modeling

A domain specific language (DSL) is a dedicated language for a specific problem
domain. For example, HTML is a DSL for web pages, Verilog and VHDL are DSLs
for hardware description. A DSL can be can have a textual, graphical, or a hybrid
concrete syntax and is essentially a meta-model of allowable specifications. A DSL
exploits abstractions so that the respective domain experts can specify their prob-
lem without paying much attention to the general purpose computational program-
ming languages such as C, C++, Java, etc. which have their own learning curve.
In our efforts, we employ the Generic Modeling Environment (GME) as a DSL
development framework. GME is a highly configurable meta-modeling environ-
ment developed by the Institute for Software Integrated Systems (ISIS) at Vanderbilt

A Framework for Modeling and Simulation of the Artificial 7

University [13, 14, 28, 38]. The GME is essentially a tool for creating and refining
domain-specific modeling and program synthesis environments. GME meta-models
are specified using a graphical/textual notation resembling UML class diagrams.

GME has been used by the authors to develop the Cognitive Systems Specifica-
tion Framework (CS2F), a composition of domain-specific languages tailored to the
requirements of specifying models and agents that base goal-pursuing behaviors on
contingencies. The DSLs currently composed in CS2F are:

CS2F/DM A specification language based on the OWL [17] ontology standard
used to specify an agent’s propositional or declarative knowledge.

CS2F/CDO A specification language based on SES theory used to specify mod-
els of domain knowledge combining aspects of agents and the situa-
tional factors or contingencies constraining their behavior.

CS2F/BM A specification language based on behavior models (predicated non-
deterministic finite state machines) used to specify an agent’s behav-
ioral repertoire.

These three CS2F specification languages have been composed into a single
meta-model defining an integrated authoring environment in which a modeler can
specify the declarative, domain, and procedural knowledge of an agent.

3.1.2 Representations of State, Goal and Domain Knowledge

System entity structure (SES) theory is a formal ontology specification framework
that captures system aspects and their properties [43]. In the past, SESs were used in
design and simulation environments to formally capture configurations of systems
that achieve a common design objective [11, 31–33, 42, 44].

In the early 1990s, researchers working at the overlap of artificial intelligence
and modeling and simulation began to design and implement environments that au-
tomated the process of design space exploration [31] to solve engineering prob-
lems [32]. SESs were used to represent system configuration alternatives in these
environments. The SES was primarily used to specify the relations between these
entities [33]. In addition to capturing aspects, entities, taxonomic relationships, vari-
able values, and structural/configuration alternatives, these SES included informa-
tion about how entities in the SES could be realized in the DEVS formalism and
composed into an executable model. To systematically explore design spaces in
these environments: (1) rule-based search processes were used to derive all valid
pruned entity structure (PES) captured by the SES; (2) information based on enti-
ties and aspects in each PES was used to compose an executable model using DEVS
components stored in a model repository; (3) each composed model was simulated;
and (4) simulation results were analyzed in order to identify the most desirable de-
sign alternative. The Solutions set is determined by the pruning process on the SES
and the optimal solution was determined by simulation of each of the designs in
Solutions set.

8 Scott A. Douglass and Saurabh Mittal

Rather than being used to capture system alternatives to be explored through
DEVS-based modeling and simulation, SES are currently being used to formally
capture structural and relational information about domains. SES are being used to
specify entire ontologies rather than just system configurations that solve engineer-
ing problems [15, 16, 43]. This current use exploits similarities between SES and
general ontologies. Current research and modeling and simulation activities utiliz-
ing SES demonstrate that extraordinarily diverse domains can be formally captured
and related to each other through formal structures such as domain ontologies, prag-
matic frames, and overlapping pruned entity structures (PES).

The CS2F framework described in this chapter uses cognitive domain ontolo-
gies (CDOs), a theoretical extension of SES to represent spaces of behavior as
if they were system configurations. Situational/agent properties, aspects and con-
straints can be formally captured in CDOs. CDOs are processed by an agent to
determine what it should do. The framework constitutes a modeling architecture
that explicitly supports the representation and processing of CDOs. This capabil-
ity allows modelers to separate the what and how concerns and specify agents that
generate process descriptions by using answers to the what question to identify and
“soft-assemble” knowledge into contextually appropriate process descriptions.

3.1.3 DEVSML 2.0 and the DEVS Unified Process

Discrete Event System Specification (DEVS) [46] is a formalism which provides a
means of specifying the components of a system in a discrete event simulation. The
DEVS formalism consists of the model, the simulator and the experimental frame
as shown in Fig. 1. The Model component represents an abstraction of the source
system using the modeling relation. The simulator component executes the model
in a computational environment and interfaces with the model using the simulation
relation or the DEVS simulation protocol in the present case. The Experimental
Frame facilitates the study of the source system by integrating design and analy-
sis requirements into specific frames that support analyses of various situations the
source system is subjected to.

Fig. 1 DEVS Framework
elements

A Framework for Modeling and Simulation of the Artificial 9

Fig. 2 Standardizing the
Model and Simulator inter-
faces

While historically models have been closely linked to the platform (such as Java,
C, C++) in which the simulator was written, recent developments in platform inde-
pendent modeling and transparent simulators [25–27, 30] have allowed the devel-
opment of both the models and simulators in disparate platform. To facilitate in-
teroperability, integration and composability, a layered DEVS Modeling stack was
proposed that executes on Service oriented Architecture (SOA) [24,26]. Current ef-
forts are focusing on a standardization process [39] wherein the simulation relation
can be standardized for further interoperability [27, 45].

Fig. 3 DEVSML 2.0 stack enabling model and simulator interoperability

The latest version of this stack, shown in Fig. 3, was proposed as a part of
Air Force Research Laboratory’s Large Scale Cognitive Modeling (LSCM) initia-
tive [5, 20, 21]. While the earlier version of the DEVSML stack was designed to
provide XML interoperability and the netcentric transparent simulation to the DEVS
models, the current version was designed to enhance scope and model interoperabil-
ity [22]. Models specified in the new DEVSML 2.0 stack are specified in domain

10 Scott A. Douglass and Saurabh Mittal

specific languages (DSLs) and then through transformations are taken to the DEVS
framework. The idea of accommodating suites of DSLs at the top layer of the stack
is a major addition in the DEVSML 2.0 stack.

The DEVSML stack has been an integral component of the larger DEVS Uni-
fied Process (DUNIP) [18, 23]. DUNIP is a universal process and is applicable to
multiple domains. However, the understated objective of DUNIP is to incorporate
discrete event formalism as the binding factor at all phases of this development pro-
cess. The important concepts, the processes within DUNIP and how they relate to
CS2F are listed below:

1. Requirements and Behavior specifications using Domain Specific Languages
(DSLs): We mentioned CS2F/BM, CS2F/DM, and CS2F/CDO as DSLs that are
designed to support a very specific objective. Similarly, any DSL designed specif-
ically for requirements specification is positioned here.

2. Platform Independent modeling at lower levels of systems specification using
DEVS DSL: This step involves the development of M2DEVSML or M2DEVS
transformations to yield DEVS and/or DEVSML models from CS2F/BM speci-
fications.

3. Model Structures at higher level of System resolution using Cognitive Do-
main Ontologies (CDO): The CS2F/CDO DSL is founded on the SES theory.
This step allows analysis and pruning using the CDOs at higher levels of systems
specification and employs model-based repository within the model integrated
computing [38] (MIC) paradigm.

4. Platform Specific Modeling or DEVS implementations on different platforms:
This concept deals with the autogeneration of executable code. The CS2F/BM
is executable using DEVSJAVA, or Erlang/OTP. CS2F/CDO is executable using
LISP and they are all integrated within the DEVS Netcentric infrastructure.

5. Platform Specific Modeling i.e. DEVS implementations on different plat-
forms: This concept deals with the autogeneration of executable code. The
CS2F/BM is executable using DEVSJAVA, or Erlang/OTP. CS2F/CDO is exe-
cutable using LISP. These DSL execution capabilities are all integrated within
the DEVS Netcentric infrastructure.

6. Net-centric execution in a distributed setup: This concept allows the execution
of any DEVSML model in a Netcentric environment where the simulation can
be executed in a local-centralized or a remote-distributed setting.

The capabilities defined above allow us to specify any kind of domain models
and take the executing real models to live Netcentric systems. A framework for
modeling and simulation of the artificial must have these basic capabilities.

3.2 Technical Description of the CS2F Framework

The CS2F framework consists of three components implemented as net-centric ser-
vices: (1) soaDM, an associative memory based on the declarative memory system

A Framework for Modeling and Simulation of the Artificial 11

of ACT-R; (2) soaCDO, a domain ontology processing application based on a non-
deterministic constraint solver; and (3) the DEVSML Stack, a DEVS-based agent
execution framework. Models and agents simulated in the framework base their be-
havior on: declarative knowledge; cognitive domain ontologies; and behavior mod-
els. The CS2F DSLs and framework components used to represent and process these
aspects of models and agents are summarized in Table 1.

Table 1 Framework DSLs and the net-centric components in which they are processed

DSL/Formalism Representation Specialization Framework Component
CS2F/DM Declarative Knowledge soaDM
CS2F/CDO Domain Knowledge soaCDO
CS2F/BM Procedural Knowledge DEVSML Stack

Declarative, or factual knowledge in a propositional form, is maintained in
soaDM. Net services provided by soaDM provide agents with an associative mem-
ory through which they can retain and retrieve knowledge. Domain knowledge, or
cognitive domain ontologies (CDOs) capturing goals and behavioral design objec-
tives, are maintained in soaCDO. Net services provided by soaCDO provide agents
executing in the KCGS framework with an ability to choose what to do on the ba-
sis of contingencies. Behavior models are predicated non-deterministic finite state
machines capturing procedural knowledge in sub-assemblies. Behavior models are
maintained and executed in the DEVSML Stack. The DEVSML Stack interacts with
the other framework components and realizes the low-level behavior of the agent.
Fig. 4 shows the component diagram of CS2F and its Netcentric implementation.

Fig. 4 SOA components in CS2F

12 Scott A. Douglass and Saurabh Mittal

3.2.1 CS2F/DM: OWL Ontologies Capturing Declarative Knowledge

Human memory is a part of a quintessential artificial system that learns and acts
in the world. Human behavior is as flexible as it is because we know lots of things
and can use what we know to craft contextually appropriate and effective actions
in many different circumstances. Humans know a great deal and can quickly cull
through all that they know in order to retrieve and apply the right knowledge given
their circumstances. Behavioral flexibility is enabled by a memory system that: (1)
provides access to vast amounts of knowledge; and (2) tunes this knowledge to
match the information structure of the environment through learning. The ACT-R
cognitive architecture [1,2] includes an associative memory system providing these
properties and capabilities. ACT-R’s declarative memory system is based on a set
of equations explaining the sub-symbolic calculation, learning and utilization of
activations and associative strengths [1, 2]. soaDM, a net-centric component of the
KCGS framework based on work described by Douglass and Myers [6], utilizes the
equations underlying ACT-R’s declarative memory system.

Declarative ontologies represent knowledge that models and agents can acquire
through experience and retrieve when relevant. CS2F/DM, the DSL with which
modelers specify declarative knowledge in soaDM, is based on the OWL ontol-
ogy standard [17]. CS2F/DM declarative knowledge ontologies describe the classes,
class properties, object properties, data properties, and instances constituting a do-
main. Declarative knowledge ontologies specified in CS2F/DM are translated into
files that configure a semantic network in soaDM. Any consistent OWL-compliant
ontology can be translated into CS2F/DM and subsequently be used to configure
the soaDM semantic network. Because of this, KCGS framework users can take ad-
vantage of existing ontologies and RDF databases. Declarative knowledge ontolo-
gies can be authored in OWL2-compliant ontology authoring environments such as
NeOn, Protégé, Wandora, or Ontopia and then migrated into soaDM. Since these
ontology authoring environments support ontology partitioning through names-
paces, ontology merging, and knowledge consistency checking, they help KCGS
framework users engineer, verify, and understand large-scale declarative knowledge
bases.

soaDM is an Erlang/OTP [4] based associative memory through which mod-
els and agents can store and retrieve propositional or declarative knowledge. The
activation-based associative retrieval mechanism underlying soaDM is based on the
declarative module of the ACT-R cognitive architecture [1]. Each node in a seman-
tic network is realized as a separate OTP process thread in Erlang. Activation cal-
culation spreads in soaDM semantic networks as messages are asynchronously ex-
changed between the process threads constituting their nodes. Since process threads
in Erlang execute concurrently, activation-based associative retrieval in soaDM is
massively concurrent. See Douglass and Myers [6] for a more comprehensive dis-
cussion of how concurrent activation calculation is carried out in soaDM.

A Framework for Modeling and Simulation of the Artificial 13

3.2.2 CS2F/CDO: Cognitive Domain Ontologies Capturing Contingencies

To be capable of generating autonomous rational action, a model or agent must
be able to transform state descriptions into process descriptions. Transformations
of this sort link high-level goals (states) to low-level actions (processes). The vast
majority of contemporary cognitive models are built up from productions, rules, or
procedural descriptions that combine information about goals and actions. On the
surface, this mixing of state and process description knowledge seems to be a natural
way of combining the translation of a state description (goal) to a process descrip-
tion (set of actions). A problem with this approach surfaces when it is employed
by a modeler specifying a large model that must act autonomously in a complex
and dynamic environment: it’s almost impossible to specify all the required proce-
dural descriptions combining goals and actions over large spaces of environmental
contingencies. In order to express a rich knowledge set that includes environment,
contingencies, resources, possible actions and much more, we need a framework
that allows us to represent knowledge in many facets or dimensions. The soaCDO is
a net-centric component of the framework the uses CS2F/CDO to represent knowl-
edge in such a way.

CS2F/CDO, the DSL in which domain models integrating knowledge related
to goals, requirement, situational factors, and possible actions can be specified, is
based on System Entity Structure (SES) theory [43]. Cognitive domain ontologies
specified in CS2F/CDO are translated into constraint networks in soaCDO. The dis-
tinguishing feature between a CDO and an SES representation is the inclusion of
constraint language in a CDO. While the SES theory lays the foundation of specify-
ing constraints and how they operate, the CDO constraint language is a formal spec-
ification and is an integral part of domain ontology. CS2F/CDO has been developed
within the GME, a meta-modeling environment in which domain-specific modeling
languages and multi-paradigm modeling frameworks can be formally specified.

The most efficient way to describe CS2F/CDO is to describe its underlying meta-
model. Fig. 5 shows the portion of the CS2F/CDO meta-model formally describing
correct cognitive domain ontologies (CDOs). The entities, concepts, and relation-
ships constituting the abstract syntax of a DSL are expressed in UML class diagrams
in GME. Concepts and entities are represented as classes. Connections terminating
with a solid diamond indicate containment relationships between classes. The car-
dinalities of containment relationships are displayed at their source. Connections
terminating with arrows indicate reference relationships. For example, a reference
relationship in the Fig. 5 indicates that “NodeReference” entities are allowed to re-
fer to “Node” entities. Triangles denote inheritance; in the figure below a triangle
indicates that “Aspect”, “Specialization”, and “MultiAspect” are all types of “Rela-
tionship”.

The meta-model in the Fig. 5 specifies that CDOs can contain: nodes/entities; re-
lations, edges/connections; variables; and a variety of references. The meta-model
in Fig. 6 shows the portion of the CS2F/CDO meta-model formally describing con-
nections between these elements allowed in valid CDOs. Each allowable connection
is represented as a dark circle. The source, destination, cardinality, and associated

14 Scott A. Douglass and Saurabh Mittal

Fig. 5 GME class diagram specifying the portion of the CS2F/CDO meta-model related to valid
entities, variables, and relationships in CDO

Fig. 6 GME class diagram specifying the portion of the CS2F/CDO meta-model related to valid
connections between entities, variables, and relationships in CDOs

connection type constraints in the meta-model work in concert with Object Con-
straint Language (OCL) constraints (not shown) to enforce axioms underlying SES
theory. Entity properties, containment and reference relationships, and constraints
in the meta-model ensure that models specified in the CS2F/CDO DSL are “correct

A Framework for Modeling and Simulation of the Artificial 15

by construction” and therefore do not violate axioms critical in SES theory. GME
meta-models can additionally define the concrete syntax or appearance of a DSL.
Fig. 7 shows a GME-based CDO authoring environment presenting a graphical/tex-
tual concrete syntax for the CS2F/CDO DSL. The DSL’s concrete syntax enables
CDO authors to combine the following elements in a graphical workspace:

Entity domain entity (concept) denoted by ‘<>’
Aspect decomposition (is made up of) denoted by ‘|’
Specialization can be of type (is a type of) denoted by ‘||’
Multi-Aspect decomposition into similar type denoted by ‘|||’
Variable variables attached to entities with ranges or values denoted by ‘˜’

Fig. 7 Cognitive Domain Ontology under development in CS2F/CDO. Note how the GME inter-
face explicitly supports the specification of CDOs

The concrete syntax of CS2F/CDO allows KCGS framework users to graphically
specify CDOs containing entities, aspects, specializations, multi-aspects, attached
variables, and domain-specific constraints. User actions and choices violating SES
axioms during CDO specification are either not allowed by the CS2F/CDO meta-
model or generate error messages. This real-time meta-model conformance check-
ing process ensures that CDO are correct by construction.

soaCDO is written in Common Lisp [37]. Non-deterministic programming capa-
bilities based on the Screamer [36] and Screamer+ [40] Common Lisp extensions
are used by soaCDO. Screamer adds two basic mechanisms to Common Lisp: (1) a
non-deterministic special form called either that takes zero or more lisp expressions
as arguments; and a deterministic function called fail that takes no arguments. The
either special form non-deterministically evaluates one of the expressions passed

16 Scott A. Douglass and Saurabh Mittal

to it, returns the value of the evaluation, and establishes a choice point. The fail
function triggers back-tracking to the most recent choice point. If un-evaluated ex-
pressions are encountered at the choice point, the next value is returned. If no addi-
tional expressions are encountered at the choice point, then back-tracking continues
to another choice point. Screamer+ extends the functionality of either/fail and al-
lows non-deterministic programming to take advantage of complex data types and
Common Lisp Object System [10].

CDOs are computationally realized as structured sets of Common Lisp Object
System objects. The root object of a CDO is an instance of a CDO-entity class.
CDO-entity instances have a unique name, a collection of zero or more attached
CDO-variables, and a collection of zero or more CDO-relations. CDO-variable in-
stances have a unique name and a value. CDO variables can only be connected
to CDO entities. Variable instances not assigned a value during initialization have
values that Screamer treats as constraint variables. CDO-relation instances have a
unique name and a collection of one of more CDO-entities. Aspect, specialization,
and multi-aspect classes are derived from the CDO-relation class. Multi-aspect in-
stances have a cardinality. The CDO-entities associated with aspects are maintained
in simple lists. The CDO-entities associated with specializations are passed to the
either special form in order to create a choice point. Establishing specialization
entities as a choice point in this way allows Screamer to manage entity enumera-
tion during the computation of constraint system solutions using back-tracking. The
CDO-entities associated with multi-aspects are maintained in a list. The number of
entities associated with a multi-aspect is a function of the cardinality of the multi-
aspect relation.

Table 2 Basic operators in the CS2F/CDO constraint language

Operator Meaning Example
and Conjunction (and p q)

or Disjunction (or p q)

not Negation (notq)

==> Implication (==> p q)

<==> Biconditional (<==> p q)

false Logical Falsity (and (not p) q)

true Logical Truth (or p (not p))

e@ Entity located in CDO (e@ musical_performance style)

v@ Variable attached to CDO entity (v@ (actions moving move_to) name)

equale Entities are equal (equale ensemble small-group)

equalv Variable has a value (equalv weight 105)

let var/val Binding
(let ((p its-raining)

(q groun-gets-wet)))
(==> p q))

The CDO pruning process is cast as a constraint-satisfaction problem (CSP) in
soaCDO. Constraint variables correspond to CDO-variable values and the entities
connected to relations. The domains of constrain variables corresponding to vari-
able values are a function of variable type. CDO-variables can currently be: inte-

A Framework for Modeling and Simulation of the Artificial 17

gers, floats, strings, lists, vectors, non-numeric enumerated sets, integer ranges, float
ranges, and Boolean values. The domains of constraint variables related to a CDO-
relation are the set of all entities connected to the relation. Constraints relate sub-sets
of the constraint variables and specify the domain values variables are allowed to as-
sume. CS2F/CDO constraints are specified in a language based on first order logic
(FOL). Constraints can employ universal and existential quantifiers, implication,
bi-directional implication, conjunction, disjunction, negation, and a comprehensive
set of non-deterministic functions. Table 2 lists important basic operators that can
appear in constraints.

Constraints expressed in well-formed statements are translated into implicative
normal form (INF). This translation reduces complex FOL-based statements to dis-
junctions of implications that are then mapped into Screamer. Appendix 1 lists im-
portant complex operators that can appear in constraints that have been translated
into INF. The translation into INF produces the following basic implications:

1. Implications consisting of conventional antecedents and conventional conse-
quents. These are mapped into Screamer as conditional constraints that use
assert! to propagate constraints in CDOs. For example, the INF implication
(==> p q) would be mapped into as (ifv p (assert! q))

2. Implications with conventional antecedents and consequents equivalent to log-
ical false. These are mapped into conditional constraints that use fail to trigger
back-tracking. For example, the INF implication (==> p false) would be
mapped into Screamer as (ifv p (fail))

3. Implications with antecedents equivalent to logical true and conventional con-
sequents. These are mapped into unconditional assertions. For example, the INF
implication (==> true q)would be mapped into Screamer as (assert! q)

CDO pruning starts with a process that relates situational factors to correspond-
ing entities in a CDO through the use of the assert! operator. These assertions com-
bine with domain-specific constraints in a subsequent search process that finds CSP
solutions using a non-deterministic search with chronological back-tracking. The
search for CSP solution in soaCDO can: (1) find one solution: (2) find the ith solu-
tion: (3) find the “best” solution; (4) find all solutions; or (5) find a solution, present
it to the user/agent, and then ask if another solution is required. The ability to obtain
solutions from soaCDO while back-tracking over choice points means that CDO
with significant combinatory complexity can still be effectively processed.

The example CDO, shown in Fig. 8, is based on an example System Entity Struc-
ture discussed in [43]. The CDO represents a set of musical performance entities.
Each musical performance has style and ensemble characteristics; each of which is
a specialization. A musical performance can therefore have a style of symphonic,
folk, or jazz. A musical performance can also therefore have an ensemble of orches-
tra, small group, or soloist. With no additional CS2F/CDO constraints, processing
of this CDO in soaCDO would result in 9 CSP solutions generated by crossing all
3 styles with all 3 ensembles. Some of these solutions are clearly implausible. For
example, “symphonic soloist” performances are obviously impossible. Implausible

18 Scott A. Douglass and Saurabh Mittal

entities such as these can be removed from the set of musical performance entities
allowed by the CDO with CS2F/CDO constraints.

Fig. 8 CDO specifying a
space of possible musical
performances

As previously mentioned, the CS2F/CDO DSL includes a powerful constraint
language that can be used to incorporate domain-specific constraints into CDOs.
The translation of these constraints into INF in soaCDO allows a rich constraint
language based on FOL to be seamlessly integrated into a CDO processing infras-
tructure built upon non-deterministic search and chronological backtracking. Table
3 illustrates how CS2F/CDO constraints refining the entity relations in the musi-
cal performance CDO translate into INF. Constraints are defined in the CS2F/CDO
constrain language using a define-constraint macro. The first argument to define-
constraint is a unique name to be assigned to the constraint. Assigning names to
constraints allows KCGS framework users to simplify interactions with soaCDO.
The second argument to define-constraint is the scope of the constraint. The scope
of a constraint is the CDO entity that is to be treated at the root of all entity refer-
ences in the constraint.

Table 3 Example constraints that refine the possible space of musical performance

Constraint Implicative Normal Form
(define-constraint m1

:musical-performance
(==> (equale (e@ style)

symphonic)
(equale (e@ ensemble)

orchestra)))

(orv
(ifv (equale (e@ style) symphonic)

(assert!
(equale (e@ ensemble)

orchestra))))

(define-constraint m2
:musical-performance
(==> (equale (e@ style) folk)

(or (equale (e@ ensemble)
small-group)

(equale (e@ ensemble)
soloist))))

(orv
(ifv (equale (e@ style) folk)

(assert!
(orv (equale (e@ ensemble)

soloist)
(equale (e@ ensemble)

small-group)))))
(define-constraint m3

:musical-performance
(==> (equale (e@ style) jazz)

(or (equale (e@ ensemble)
small-group)

(equale (e@ ensemble)
orchestra))))

(orv
(ifv (equale (e@ style) jazz)

(assert!
(orv (equale (e@ ensemble)

orchestra)
(equale (e@ ensemble)

small-group)))))

A Framework for Modeling and Simulation of the Artificial 19

In Table 3, the constraint m1 is defined with a scope of musical-performance (the
root entity in the example CDO shown in Fig. 8). Basing m1 on this scope allows for
the style and ensemble specializations to be clearly related in a conditional constraint
requiring that when the style of the musical-performance is symphonic the ensem-
ble must be orchestra. To ensure that constraints are as computationally efficient as
possible, constraint authors should define the scopes of their constraints so that the
CSP solution process can “push” constraints as far into the sub-structure of CDOs
as possible. The last argument to define-constraint is an expression specifying enti-
ty/value requirements and variable assignments in the indicated scope. The m2 and
m3 constraints in Table 3 provide additional domain-specific constraints that refine
the domain knowledge captured in the musical performance CDO. An additional
constraint limiting the nature of musical performances is provided in Appendix 2.
The m4 constraint in Appendix 2 demonstrates how the transformation to INF al-
lows constraint authors to specify groups of implications in a single constraint. Note
how the negations in the consequents of m4 translate into failure assertions in the
implicative normal form. During the CSP solution process in soaCDO, these failure
assertions trigger: (1) the elimination of CDO entity/variable assignments; and (2)
chronological backtracking.

Table 4 Examples showing how CS2F/CDO constraints impact CSP in soaCDO

Constraints style ensemble

none

symphonic
symphonic
symphonic
folk
folk
folk
jazz
jazz
jazz

orchestra
small-group
soloist
orchestra
small-group
soloist
orchestra
small-group
soloist

m1, m2, m3

symphonic
folk
folk
jazz
jazz

orchestra
small-group
soloist
orchestra
small-group

m4

symphonic
folk
folk
jazz
jazz

orchestra
small-group
soloist
orchestra
small-group

Table 4 lists CSP solutions found by soaCDO under conditions when: (1) no
additional domain-constraints were allowed to impact constraint propagation; (2)
the simple m1, m2, and m3 constraints are allowed to impact constraint propaga-
tion; and (3) the complex m4 constraint defined in Appendix 2 is allowed to impact
constraint propagation. Close inspection of the m4 constraint reveals that it predom-
inately impacts the constraint propagation process through fail-based backtracking.
For example, when the ensemble constraint variable is bound to orchestra and the
style constraint variable is bound to folk, an assertion of failure immediately elimi-
nates the solution and initiates backtracking.

20 Scott A. Douglass and Saurabh Mittal

soaCDO is a Common Lisp based service through which models and agents can
represent and process cognitive domain ontologies formally capturing the entities,
constraints, and relationships constituting the requirements of the tasks they are
performing. soaCDO translates cognitive domain ontologies specified CS2F/CDO
into entity/relation networks that are processed with a non-deterministic constraint
solver. The constraint-based search/pruning mechanism functions as a type of cog-
nitive control allowing models and agents to match their goals to possible actions in
such a way that its goals are achieved despite the vagaries of its situation. Cognitive
domain ontologies represent knowledge that models and agents are able to process
in order to determine what they should do. Executing in real time, this mechanism
allows models and agents to generate behavior in situ.

3.2.3 CS2F/BM: Behavior Models Capturing Behavioral Sub-Assemblies

In state-of-the-art cognitive modeling frameworks such as such as ACT-R [2], EPIC
[3], and Soar [29], procedural knowledge is specified in productions or rules. Each
production is essentially an association between antecedent context requirements
and consequent actions. During model simulation, productions whose context re-
quirements are met form a conflict set. Utility calculations or preference are typi-
cally used to select which production in the conflict set is allowed to exercise its
consequent actions. Unless context is embellished with persistent information, indi-
vidual productions are unaware of productions that precede or follow them during
model simulation. This makes it very difficult to model complex behaviors based
on sequences of productions. Modeling frameworks lacking a representation of be-
havior above the production require their users to carefully embellish context with
state information if their models depend on behaviors based on sequences of pro-
ductions. Behaviors based on sequences of productions also must be shielded from
interruption. Failure to shield sequences of productions underlying complex behav-
iors frequently leads to model brittleness in complex dynamic environments.

In the KCGS framework, procedural knowledge is represented in CS2F/BM be-
havior models; formal structures that allow a modeler to represent behavior above
the level of the production [5,20]. Behavior models can be stored in repositories and
used in different contexts. CS2F/BM allows a cognitive modeler to build models and
agents from sub-assemblies (behavior models) that conceal complexity rather than
large numbers of primitives (productions) that expose complexity. Behavior models
are computationally realized as predicated finite state machines. Transitions in be-
havior models are functionally equivalent to productions; they have pattern-based
guards that represent context requirements and side-effects that represent conse-
quent actions. Transition pattern guards are compared to a set of events/facts main-
tained in a working memory. Behavior models are specified in CS2F/BM, a DSL
developed and delivered in the Generic Modeling Environment (GME).

During model execution in the KCGS framework, an agent’s behavior is deter-
mined by the set of behavior models currently in its behavior repertoire. While tran-
sition activity in behavior models is typically localized (transitions and generated

A Framework for Modeling and Simulation of the Artificial 21

actions are concurrent across behavior models), it is possible for them to interact
or synchronize through the exchange of events or messages. This allows behavior
models to be organized into hierarchies. Discussions of behavior models and their
execution can be found in [5, 20].

Fig. 9 Graphical representa-
tion of a behavior model in
CS2F/BM

Fig. 9 presents an example behavior model (BM) in a hybrid graphical/textual
concrete syntax. The BM allows an agent to attempt to retrieve a room from soaDM,
the associative memory component of the KCGS framework. Transitions in the BM
are labeled with brief comments explaining or documenting the purpose of each
transition. The state in the BM has been assigned a name that also explains or doc-
uments the behavior captured by the BM.

While specifications in the graphical/textual concrete syntax effectively summa-
rize the transitions and state changes underlying a BM, the formal details of the
BM remain hidden. The formal details of states and transitions can be specified and
edited in GME by selecting a state or transition in an editor and entering attributes in
a set of text entry cells. This process is illustrated in [5, 20]. The automated model-
to-model translation process that semantically anchors BMs specified in CS2F/BM
produces a text-only intermediate description of each behavior model. An example
of this textual CS2F/BM form is provided in Table 5.

As illustrated in Table 5, BM transitions can have the following attributes (pri-
ority, src, and dst attributes are required):

priority resolve conflict when more than one transition is possible
label a description of the function/purpose of a transition.
src the state from which a transition originates.
dst the state to which a transition leads.
pre binds “name=value” statements used to bind and compare locally scoped

variables (LSVs).
patterns predicate/event constraints that must be met.
functions execute calculations involving LSVs and context pattern elements.

22 Scott A. Douglass and Saurabh Mittal

Table 5 Transition details of the same behavior model specified in a text form generated during
the automated transformation of CS2F/BM to executable DEVSML
Behavior Model Transition Details in Textual CS2F/BM
transition {

priority 1
label "choose_room intention noticed"
src startstate
dst retrieving_room
pre_binds w=W,context=C
patterns {choose_room}
functions Endo=[{type, destination}],

Exo=expand_context(C, W),
Cs=[]

assertions {execute_retrieval, Cs, Endo, Exo}
}
...
transition {

priority 2
label "retrieved a room"
src retrieving_room
dst stopstate
patterns {retrieval_success, C, _},

{type, C, destination},
{name, C, CN}

assertions {room_chosen, C, CN}
}

assertions predicates/events added to working memory after a transition.
post bindings name/value pairs that overwrite LSVs maintained by a BM.

Predicates/events are represented in transitions as tuples delimited by curly-
braces. For example, “{choose room}” in the patterns of the first transition in Table
5 is a predicate representing an agent intention. In this transition, pre binds and
functions are used to assemble the sub-parts of an assertion that executes a retrieval
through soaDM. The second transitions in Table 5 specifies how the sub-parts of
a room chosen assertion are to be assembled from properties of a successfully re-
trieved set of facts about a destination/room.

In the previous section we saw how a DSL such as CS2F/BM can specify be-
haviors similar to those produced by sets of ACT-R productions. The approach pro-
posed in this section takes the CS2F/BM meta-model in its entirety. The meta-model
is semantically anchored in DEVS, which provides solutions to interoperability, ex-
tensibility, composability and scalability. CS2F/BM is a recast of our earlier de-
scribed Research Modeling Language (RML) and detailed transformation is avail-
able in [5, 20]. The next subsection provides an overview of the methodology.

From structure perspective, any DEVS system is made up of three elements, the
model components (atomic or coupled), the messages that flow between them, and
the couplings that communicate these messages between components [46]. Both the
atomic and coupled DEVS components transmit and receive messages. However,
the capacity to interpret the message and use it to express the behavior is solely the
characteristic of a DEVS atomic component. A new message originates exclusively
within an atomic component per its behavior specification and is then placed at the
output interface of the atomic component. The behavior of an atomic component is a

A Framework for Modeling and Simulation of the Artificial 23

function of superposition of two behaviors i.e. when an external message is received
and when it is not. In order to specify the behavior, a state space is specified and the
transitions between these states are defined with respect to an ‘event’ abstraction.

Describing the richness of DEVS atomic behavior is outside the scope of this
paper. We will consider a subset of DEVS formalism known as Finite Deterministic
DEVS (FDDEVS) [9]. FDDEVS implemented in the DEVSML 2.0 stack is called
the DEVS modeling language [22] that abstracts the DEVS formalism. An auto-
mated transformation process using EBNF and Xtext Eclipse Modeling Framework
(EMF) is formally specified to preserve the true DEVS semantics. The platform
independent DEVS modeling language, as illustrated in Fig. 3 is semantically an-
chored to the DEVS M&S framework through a middleware.

The notion of ‘state’ in DEVS is associated with occurrence of an ‘event’. Now,
looking at each of the transitions in Fig. 9, we find that each transition although
specifies the source src and the destination dst state, has more going on inside it.
For example, the pre binds, post binds, patterns and assertions elements. As per
the CS2F/BM semantics, the model will expect the pre bind variables to match up
with the patterns, and if matched, will perform the post bindings and assertions
and will then finally move to the dst state. In DEVS semantics, this operation can
be considered as two events, and consequently, two states. The first state being,
beginOperation, wherein evaluation is being made per input patterns and the second
state being, dst itself. On completion of first state, assertions (output) is being sent
and the model then moves to dst state. While there is no problem in the CS2F/BM
semantics, the DEVS formalism requires the specification of output function which
is associated with a specific state. If we preserve the CS2F/BM state set then the
point where two events happen together, ie. Incoming patterns and assertions, breaks
the notion of discrete event in DEVS formalism. The DEVS semantics very clearly
expresses this in the output function. Using the system homomorphism concepts
[46] as shown in Fig. 10, by introducing a Zero time state, we not only preserve
the CS2F/BM semantics but also transform the state machine into a DEVS state
machine. Table 6 lists the mapping of CS2F/BM semantics into FDDEVS elements.

Fig. 10 Preservation of States
as two systems are compared
and M2DEVS transformation
is performed

24 Scott A. Douglass and Saurabh Mittal

Table 6 Semantic mapping from CS2F/BM to FDDEVS

CS2F/BM Elements FDDEVS Elements
Globals

states S
Transitions 1. If patterns > 0, then each tuple in patterns is an incoming

external message and be addressed in ext. The src state must
transition to beginDst state in zero time.
2. If assertions > 0 then each tuple is an outgoing message
and be addressed in in state beginDst.
3. every beginDst state should internally transition to dst in
0ms. Every dst must match the ta = 50ms of CS2F/BM state
and once elapsed should internally transition to passive.

src s in S
dst s in S
patterns X
assertions Y

We have provided an overview on the execution of M2DEVSML transforma-
tion from one CS2F/BM DSL into another DSL (DEVSML) that is semantically
anchored in DEVS. More details about the atomic behavior, coupling and structure
of the transformed CS2F/BM model into DEVS atomic and coupled models can be
seen in [20].

4 Modeling in the CS2F Framework

Two agents will be described in the following section. Discussions of how these
agents are specified and executed in the KCGS framework illustrate: (1) how declar-
ative knowledge is specified in CS2F/DM (Protégé); (2) how behavior models are
specified in CS2F/BM (GME); (3) how cognitive domain ontologies are specified
in CS2F/CDO (GME); and (4) how transformed versions of declarative ontologies,
behavior models, and CDOs are executed in the net-centric simulation framework.
The agents have been simplified so that connections between ontology, epistemol-
ogy, teleology, and artificial behavior can be clearly and effectively made.

4.1 An Autonomous Agent

Earlier we defined an autonomous agent as one that bases its actions on its contin-
gencies. To be autonomous, such an agent must base its actions on the constraints
and affordances of its situation. The first of the agents that will be discussed nav-
igates in a synthetic task environment while searching for a reward item. Through
instance-based learning enabled by an associative memory [8], this agent adapts is
behavior over time in order to match the information structure of the environment.

A Framework for Modeling and Simulation of the Artificial 25

This agent represents what it should do in a CDO, how it should behave in a set
of BMs, and facts it knows and learns in a declarative memory. Rather than bas-
ing its behavior on pre-specified rules, the autonomous agent: (1) assigns aspects
of its contingencies to entities and variables in a CDO: (2) processes the CDO us-
ing a constraint-satisfaction process in order to determine what it should do: (3)
determines how it should behave by determining which entities in a CSP solution
correspond to BMs: and then (4) effectively acts by incorporating these BMs into
its behavioral repertoire.

The agent acts in a virtual environment consisting of four rooms. A centrally
located room is known as the home room. The other rooms are known as room1,
room2, and room3. When the agent moves to a trigger plate in the home room, a
reward (small item) randomly appears in room1, room2, or room3. After triggering
this event, the agent chooses a room (by retrieving a memory corresponding to it
from declarative memory), moves to the room, and then searches the room for the
reward. If the reward item is visible in the chosen room, the agent: (1) enters the
room: (2) collects the reward; (3) strengthens the activation of the room in declar-
ative memory by making a mental note of the room; and (4) navigates back to the
home room. If the reward item is not visible in the chosen room, the agent does noth-
ing. Having collected the reward or not, the agent then returns to the trigger plate.

Initially, the agent has no preference for room1, room2, or room3; the three pieces
of declarative knowledge in memory corresponding to the rooms all have the same
level of activation. If the appearance of the small item is truly random across the
three rooms, then the agent will effectively never come to prefer one room over the
others. If the small item is allowed to appear with different probabilities across the
rooms, then finding and collecting the item leads to the agent preferring one room
over the others. With time and trial repetition, the agent’s room preferences adapt
to match the reward probabilities of the rooms as mental notes about rooms lead to
activation changes in relevant pieces of declarative knowledge.

4.1.1 CS2F/DM – The Agent’s Declarative Knowledge

The autonomous agent requires little declarative knowledge to be effective. Ap-
pendix 3 summarizes the initial configuration of the agent’s declarative memory
(maintained by soaDM). Declarative information is represented as nodes in the
soaDM semantic network. Edges in the semantic network represent relations be-
tween nodes and other nodes (object properties) or numbers/strings (data proper-
ties). Properties are always arity/2 (relate 2 things) and have domain and range re-
strictions. For example, the agent initially knows that room1: (1) is of type des-
tination (is somewhere is can consider as destination goal); (2) is connected to
home room; and (3) has a string name of “room1”. An inspection of door1 re-
veals that it is both a way in and way out of both room1 and home room. In other
words, nodes and relations represent knowledge that the agent can navigate from
home room to room1 through door1.

26 Scott A. Douglass and Saurabh Mittal

4.1.2 CS2F/CDO – The Agent’s Domain Knowledge

The agent uses a single CDO to determine what it needs to do in order to achieve its
goal of finding and acquiring the small item. The top-level entity in this CDO rep-
resents an effective action (or space of behaviors that achieve the design objective
of a particular goal). The primary decomposition of effective action is shown in the
Fig. 11.

Fig. 11 Top-level entities
and relations in the effec-
tive action CDO. Note that
the percepts, actions, goals,
and environment entities are
actually reference to previ-
ously specified entities in a
repository

The CDO formally captures the space of effective actions by decomposing them
(through aspect decomposition) to percepts, actions, goals, and the environment.
This decomposition specifies that percepts, actions, goals, and the environment are
aspects of effective actions. In the CDO, percepts, actions, goals, and environment
are actually references to additional CDOs held in a CS2F/CDO repository main-
tained in GME. References can be expanded when the modeler wishes to view or
modify the details of the referred-to entities. The ability to use entity references in
CDOs encourages the re-use of CDOs and significantly reduces the visual complex-
ity of large CDOs.

Fig. 12 Component CDO specifying the percepts the autonomous agent can comprehend

Fig. 12 shows that percepts entities have characteristics related to sounds, ob-
jects, self changes, messages, and memories. Each of these characteristics is actu-
ally a specialization. The sounds specialization for example, specifies that a percepts
sound can either be trial tone or none. Instances of the percepts entity correspond

A Framework for Modeling and Simulation of the Artificial 27

to events/facts the agent is able to perceive. A health vial corresponds to the small
item the agent is seeking to locate and acquire. A health increase corresponds to an
event/fact generated by the act of collecting the reward item. This percept type is
used by the agent to recognize when it has successfully collected the reward item. A
start activity corresponds to a message provided to the agent by an operator or ex-
periment frame in order to initiate an agent’s behavior. Lastly, the recalled room and
recalled door percepts correspond to events/facts retrieved from declarative mem-
ory.

Fig. 13 Component CDO specifying the actions the autonomous agent can initiate

Fig. 13 shows that actions entities have characteristics related to moving, look-
ing, and recalling. These characteristics are specializations. The move to room,
move to, search for, recall room, and remember good room entities in the actions
CDO are actually references to behavior models. When the agent processes the ef-
fective action CDO in situ, instances of these references in CSP solutions will be
used to dynamically reconfigure the behavior repertoire of the agent.

Fig. 14 shows that goals entities are a combination of a part task entity express-
ing the sub-goal underlying an effective action and a desired destination. The des-
tination specialization specifies that goals can involve a desired destinations related
to a room or location. The room entity can be room1, room2, room3, or home room.
The location entity can be door1, door2, door3, trigger plate, or none.

Fig. 14 Component CDO specifying the goals the autonomous agent can maintain

28 Scott A. Douglass and Saurabh Mittal

Table 7 illustrates how CDO and domain constraints capture what an agent
should do in situ. The table shows three constraints that allow the autonomous agent
to determine what it should do upon perceiving a trial tone sound in a virtual envi-
ronment.

Table 7 Constraints allowing the autonomous agent to respond to a sound percept

Examples of the CS2F/CDO Constraint Language
(define-constraint p_hear_trial_tone

;; If the trial_tone is heard, then choose a room.
:effective_action
(==> (equale (e@ percepts sounds) trial_tone)

(and (equale (e@ goals part_task) choose_room)
;; The trial_tone can only be heard in the home_room.
(equale (e@ environment current_room room room_spec) home_room))))

(define-constraint c_choose_room
;; Limits the context in which choose_room is applicable.
:effective_action
(==> (equale (e@ goals part_task) choose_room)

(and (equale (e@ percepts objects) none)
(equale (e@ percepts self_changes) none)
(equale (e@ percepts messages) none)
(equale (e@ percepts memories) none)
(equale (e@ actions looking) none)
(equale (e@ actions moving) none)
(equale (e@ goals destination location location_spec) none))))

(define-constraint g_choose_room
;; To act out choose_room, recall a room from memory.
:effective_action
(==> (equale (e@ goals part_task) choose_room)

(equale (e@ actions recalling) recall_room)))

Table 8 shows how the CSP solution process provided by soaCDO can use a
CDO and additional contingency-based assertions to help an agent determine what
it should do in situ. To simplify explication, a direct interaction with the CSP in-
frastructure of soaCDO is shown. The top part of Table 8 consists of a call to the
soaCDO function “soaCDO-solutions”. This primitive initiates a non-deterministic
CDO search that returns the first configuration of entity and attached variable as-
signments meeting a CDO’s structural constraints and additional domain constraints
expressed in the CS2F/CDO constraint language. In Table 8, one CSP solution from
the effective action CDO is being requested. The call to soaCDO-solutions includes
one additional assertion that maps properties of the agent’s contingencies to entities
in the effective action CDO. Assertions such as this are essentially function calls
accepting two arguments. The first argument is the CDO scope of the assertion. The
second argument is the actual assertion. The assertion in Table 8 indicates that in
the scope of percepts in the effective action CDO, sound is to be constrained to
trial tone. This contingent-based assertion and additional CS2F/CDO domain con-
straints lead to the single CSP solution shown in the bottom part of Table 8. The
displayed summary of the CSP solution clearly indicates that under the contingen-
cies expressed by the assertion, the autonomous agent should pursue the action of
recalling a room (recall room).

A Framework for Modeling and Simulation of the Artificial 29

Table 8 Example showing how CSP in soaCDO results in a CDO solution or prune determining
what action(s) the agent should take in order to choose a room

Examples of the CS2F/CDO Constraint Language
(soaCDO-solutions

(effective_action ’(assertion :percepts (equale (e@ sounds) trial_tone)))
:one)

Percepts: sounds/trial_tone, objects/none, self_changes/none, messages/none,
memories/none

Actions: move/none, look/none, recall/recall_room
Goals: part_task/choose_room, destination/none
Environment: room/home_room, location/none
nil

Listings in Tables 7 and 8 illustrate how the autonomous agent acts effec-
tively after perceiving a trial tone sound. The critical thing for the reader to remain
aware of is that in the KCGS framework, the agent is determining what it should
do by mapping aspects of its contingencies to a CDO and then using a constraint-
satisfaction process to determine how it should use BMs to achieve its goals. The
framework allows modelers to exploit an abstraction layer between BMs and CDOs.

The autonomous agent described in this section illustrates how knowledge about
contingencies, possible actions, and goals can be represented in CDOs and pro-
cessed by agents in order to achieve a form of real-time behavioral autonomy. Under
these circumstances, CDOs are used to formally relate high-level goals or behavioral
design objectives (state descriptions) and low-level actions (process descriptions) in
such a way that the agent’s behavior is not simply a function of pre-specified rules.
CDOs represent connections between contingencies in which agents must act, the
agent’s goals, and behaviors the agent might utilize to achieve these goals. The key
to processing the domain knowledge captured in a CDO under these circumstances
is a search process that finds configurations of entities and variables that: (1) meet
structural constraints expressed through the aspect, specialization, and multi-aspect
relationships in a CDO; and (2) satisfy domain-specific constraints expressed in the
CS2F/CDO constraint language.

4.1.3 CS2F/BM – The Agent’s Procedural Knowledge

The autonomous agent uses 7 behavior models to generate effective action in the
synthetic task environment. The behavior models enable the agent to perform fun-
damental behaviors necessary for it to act in the task environment. The behavior
models are as follows:

1. assess separation: Enables the agent to track the separation distance between
itself and a destination location. The separation is reported using the qualitative
categories separated and close.

2. find item: Enables the agent to determine the location of an item by: seeing
it directly in percepts; scanning for it in a 90 degree rotation to the left; and
scanning for it during a final 180 degree rotation to the right.

30 Scott A. Douglass and Saurabh Mittal

3. move to: Enables the agent to either see or recall the location of a named entity
and move to it. If the location information is neither visible nor recallable, then
the agent rotates until the location information is visible.

4. move to room: Enables the agent to use a retrieved doorway and the behavior
model move to to move an agent from one room to another. If the agent is unable
to remember a doorway that leads from its current room to the desired room, the
agent initiates a new trial.

5. recall room: Enables the agent to either: retrieve a room that has provided a high
frequency of reward items in the past; or randomly choose a room.

6. remember good room: Enables the agent to increase the activation of declara-
tive knowledge corresponding to a room in which the small item was collected.

7. search for: Enables the agent use the find item and move to behavior models to
locate and collect the reward item.

Fig. 15 Graphical represen-
tation of a behavior model in
CS2F/BM specifying how the
autonomous agent can achieve
the objective of moving to a
room

The move to room behavior model is shown in Fig. 15. The graphical rendering
of the BM shows that the overall behavior involves recalling a door and moving to
it. When an agent intends to move to a room, it remembers which door leads to the
room and then navigates to the door. When the agent reaches the door, its intended
movement is completed and the behavior model transitions to an end state.

Table 9 shows the details of two transitions in the move to room behavior model.
To move to a room, the agent must either visually locate or recall the location of a
door that leads from the current room in which it is located and the room it con-
siders its destination. The first of the transitions allows the agent to retrieve a door
from declarative memory. Retrieval constraints require that the retrieved door be

A Framework for Modeling and Simulation of the Artificial 31

Table 9 A partial listing of the transition details of the same behavior model specified in a text
form generated during the automated transformation of CS2F/BM to executable DEVSML

Behavior Model Transition Details in Textual CS2F/BM
transition {

priority 1
label "move_to intention noticed"
src startstate
dst recalling_doorway
pre_binds context=C,w=W
patterns {move_to_room, From, To}
functions Constraints=[{type, door}, {way_in, To}, {way_out, From}],

Endo=[{type, door}],
Exo=expand_context(C, W)

assertions {execute_retrieval, Constraints , Endo, Exo}
post_binds from=From,to=To

}
...
transition {

priority 2
label "door recalled"
src recalling_doorway
dst moving_to_door
patterns {retrieval_success, C, _}, {type, C, door}, {name, C, N}
assertions {assert_intention, {move_to, C, N}}
post_binds door=C,door_name=N

}
...

a way out of the room the agent is moving from and an way in to the room the
agent is moving to. The second transition allows the agent to actually move to the
successfully retrieved door. The transition essentially: (1) verifies that information
about a door has been retrieved; (2) obtains the name of the door; and (3) initiates a
sub-goal to move to the door. The “{assert intention, {move to, C, N}}” assertion
in this transition initiates transition activity in the move to behavior model. These
two transitions demonstrate how a behavior model can interact with:

• soaDM in order to base behavior on retrieved declarative knowledge
• other behavior models in order to coordinate hierarchical behavior based on the

execution of sub-goals

4.1.4 Summary of the Autonomous Agent’s Runtime Behavior

When the autonomous agent is initially situated in the simulated task environment,
it has: (1) declarative knowledge about rooms, doorways, and the trigger plate. Ini-
tially, the agent has a single central executive behavior model in its behavior reper-
toire. Transitions in the central executive behavior model are sensitive to the fol-
lowing percepts/events:

1. A start activity message originating from a modeler or experiment frame indi-
cating that the agent should begin to perform the overall activity of trying to find
and collect the reward object.

32 Scott A. Douglass and Saurabh Mittal

2. A trial tone sound originating from the external environment indicating that the
agent should initiate a single effort to find the reward object. This sound is pro-
duced when the agent stands on the trigger plate.

3. A recalled room retrieved memory originating from the agent’s associative mem-
ory indicating which room the agent expects to find the reward object in.

4. A search room goal originating from an internal intention indicating that the
agent wants to search for the reward object in a room.

5. A health increase perceived change originating from self-monitoring indicating
that the agent has collected the reward object and should make a mental note
(increase the activation) of the current room.

As percepts/events originating from outside or inside the agent trigger these tran-
sitions, the agent asserts entity and variable values from its contingencies into the
effective action CDO and initiates a CSP-based process in soaCDO that “prunes”
the CDO. This process utilizes constraints similar to those presented in Table. 7.
The agent then integrates any behavior models referred to in one of these CSP so-
lutions into its behavior repertoire. These new, but contextually relevant, behavior
models generate effective action until some future percept/event triggers another
transition and precipitates another “prune” of the effective action CDO.

The central executive behavior model only transitions when percepts/events re-
quire that it re-assess what it should be doing in order to achieve its goal. Between
these transitions, behavior models in the agent’s behavior repertoire autonomously
tell the story of how the agent should act in the moment. The process of using cog-
nitive domain ontologies to determine what to do given contingencies and behavior
models to determine how to act in situ allows an agent to translate state descriptions
to process descriptions.

4.2 Agents that use an Abduction-Based Inquiry Process

The agent described in the previous section demonstrates how constraint-based pro-
cessing of CDO can inform an agent what it should do in situ. The agent described
in this section demonstrates how CDO can additionally be used by an agent to sys-
tematically increase its understanding of its situation. The agent is capable of a type
of sensemaking. Before describing this agent, sensemaking and abduction, the type
of inference that enables sensemaking, will be defined.

Sensemaking is a process shown in Fig. 16 through which people attempt to
understand complex and ambiguous situations so that they can make reasonable
decisions and act effectively [12]. In context of this chapter, sensemaking will be
defined as abduction-based inquiry.

Abduction can be thought of as a type of inference that plays a role in a process
through which inquiry reduces doubt [7, 34]. As a person assesses and understands
the context they are trying to act effectively in, they either: (a) find that it’s “business
as usual” and act according to routine; or (b) are surprised by unexpected events and

A Framework for Modeling and Simulation of the Artificial 33

observations and try to make sense of things through designed inquiry. A surprised
person uses abduction, a type of inference from observations to likely explanations
or causes, to generate new ideas (hypotheses) about their situation. Through deduc-
tion and induction, these hypotheses can be expanded and confirmed/disconfirmed.
If necessary, follow-on actions can refine knowledge and hypotheses. The model
described in this section uses domain knowledge captured in a CDO and abduc-
tion to generate knowledge and hypotheses. This model of abduction is intended
demonstrate that an inference-based process (artificial phenomena) that increases
the knowledge and autonomy of an agent can be modeled and simulated in the
KCGS framework.

Fig. 16 Central concepts,
relations and constraints in
a model of sensemaking as
abduction-based inquiry

In addition to allowing an agent to determine what it should do in situ, CDO sur-
prisingly allow agents to systematically increase their understanding of situations
through an abduction-based inquiry process. The essence of this ability is a non-
monotonic reasoning process through which agents: (1) assesses evidence about
their situations; (2) assert this evidence and other related aspects of their situations
into CDOs representing world knowledge; (3) use constraint propagation to process
the CDOs; (4) treat the resulting set of CSP solutions as a hypothesis sets consti-
tuting explanations of their situation; and (5) design actions that will allow them to
effectively reduce their hypothesis set.

When used this way, CDOs are not just matching contingencies to goals and
indicating what the agent should do in situ. Rather, CDOs are being used to capture
world knowledge that can be used to relate small-scale observations (evidence) to
large-scale ontologies (explanations) in a process that, employing designed action,
increases the epistemological quality of the agent’s knowledge!

34 Scott A. Douglass and Saurabh Mittal

To illustrate this process in as simple an agent as possible, this section will de-
scribe an agent that pursues a singular goal of trying to discover the identity of an
unknown person. The agent has some general world knowledge about individuals
and facial characteristics. The agent knows that certain uniquely identifiable indi-
viduals have certain visual characteristics. When asked to guess the identity of an
initially unknown person, the agent asks questions designed to constrain the identity
of the person so as to systematically refine its knowledge about them.

4.2.1 CS2F/CDO – The Agent’s Domain Knowledge

The following figures partially present the CDO used by the identity determination
agent. The top-level guess CDO in Fig. 17 contains entity references that reduce the
visual complexity of the CDO. In order to conserve space, only two of the entity
references are presented in full detail in Fig. 18 and Fig. 19. Each entity reference
is replaced by the details of the referred to CDO by soaCDO when CS2F/CDO
specifications are translated into executable Common Lisp.

Fig. 17 Top-level entities
and relationships in the guess
CDO

Fig. 18 Component CDO specifying the names guesses can be based on

A Framework for Modeling and Simulation of the Artificial 35

Fig. 19 Component CDO specifying the simple characteristics guesses can be based on

The guess CDO specifies a space of identities. Without additional domain con-
straints, this CDO would produce a large number of solutions or prunes when pro-
cessed by soaCDO. These solutions would combine names with constellations of
simple, complex, and chosen characteristics. Without domain constraints specify-
ing the unique characteristics of each guess name, multiple solutions based on each
name would exist.

If constraints similar to those shown in Table. 10 are defined and incorporated
into the CDO, then each guess name is constrained to have a specific set of charac-
teristics. Under these circumstances, the guess CDO captures a set of named identi-
ties with fixed characteristics. With these domain constraints, only one solution for
each guess name can exist.

Table 10 Example constraints refining the aspects of guesses. Note how these constraints “define”
individuals by relating a set of characteristics to the name of a guess

Examples of the CS2F/CDO Constraint Language
(define-constraint adam

:guess
(let ((<simple_asp> (n@ guess ... simple_asp))

(<integrated_asp> (n@ guess ... integrated_asp))
(<chosen_asp> (n@ guess ... chosen_asp)))

(==> (equale (e@ guess guess_asp name name_spec) adam)
(and (equale (e@ <simple_asp> face_shape corpulance) fat)

(equale (e@ <simple_asp> nose size) small)
(equale (e@ <simple_asp> skin skintone) light)
(equale (e@ <simple_asp> hair hair_color) brown)
(equale (e@ <simple_asp> hair hair_type) straight)
;;
(equale (e@ <integrated_asp> countenance countenance_spec) smile)
(equale (e@ <integrated_asp> gender_spec) male)
(equale (e@ <integrated_asp> age age_spec) old)
;;
(equale (e@ <chosen_asp> facial_hair mustache_spec) none)
(equale (e@ <chosen_asp> facial_hair beard_spec) none)
(equale (e@ <chosen_asp> headgear headgear_spec) hat)
(equale (e@ <chosen_asp> eyeware eyeware_spec) none)))))

... Additional Constraints ...

36 Scott A. Douglass and Saurabh Mittal

Possessing world knowledge capturing information about the characteristics of
named individuals, the identity determination agent is able to guess the unknown in-
dividual by systematically acquiring knowledge about his or her characteristics. To
acquire knowledge about the characteristics of the unknown individual, the agent
simply asks if they have a specific characteristic. Each answer to these queries be-
comes an assertion that reduces the number of subsequent CSP solutions found by
soaCDO. If CDO solutions are considered hypotheses about the identity and char-
acteristics of the unknown individual, then each assertion reduces the number of
hypotheses. This process clearly uses inquiry to reduce doubt. The listing in Ta-
ble. 11 shows how 4 assertions reduce the hypothesis space represented in the guess
CDO to 2. The assertions indicate that previous questions led to knowledge that the
individual: (1) is wearing a hat; (2) is not wearing glasses; (3) is female; and (4)
is young. When these characteristics are asserted as requirements during the con-
straint propagation process, only 2 solutions are found. To continue to make sense
of the identity of the unknown individual, the agent would note that the remain-
ing hypotheses differ with respect to hair color and ask “Does the unknown person
have black hair?” The answer to this query would provide the last piece of evidence
required to disambiguate the identity of the unknown individual.

Table 11 Example showing how CSP in soaCDO results in a set of CDO solutions constituting the
hypothesis space resulting from abducing from evidence of characteristics to explanations based
on named guesses meeting constraints based on the evidence

Example CSP Solution
(soaCDO-solutions

(guess_ ’(assertion :integrated_characteristics (equale (e@ age_spec) young))
’(assertion :integrated_characteristics

(equale (e@ gender_spec) female))
’(assertion :chosen_characteristics

(notv (equale (e@ eyeware_spec) glasses)))
’(assertion :chosen_characteristics (equale (e@ headgear_spec) hat)))

:print)

Name: sophia
Simple Aspects: face_shape/thin, nose/small, skintone/light, hair_color/blond,

hair_type/curly
Integrated Aspects: expression/smile, gender/female, age/young
Chosen Aspects: facial_hair/(none, none), headgear/hat, eyeware/none

Do you want another solution? (y or n) >> y

Name: petra
Simple Aspects: face_shape/thin, nose/small, skintone/light, hair_color/black,

hair_type/curly
Integrated Aspects: expression/smile, gender/female, age/young
Chosen Aspects: facial_hair/(none, none), headgear/hat, eyeware/none

Do you want another solution? (y or n) >> y
nil

The ambiguous situation the identity determination agent is trying to make sense
of centers on the ambiguous identity of an individual. When the agent is initially
asked to make sense of its situation, it is unable to discount any of the named indi-

A Framework for Modeling and Simulation of the Artificial 37

viduals it has knowledge about in the guess CDO. The hypothesis space the agent
seeks to reduce using an abduction-based inquiry process contains all named indi-
viduals. The agent reduces the hypothesis space by asking questions about charac-
teristics distinguishing a subset of the hypothesis space. The agent uses a CDO and
the assertion of accumulating evidence to refine its knowledge of the identity of the
unknown individual. Using a CDO in this way is quite different than using one to
determine what to do in situ since it enables an agent to refine its knowledge.

5 The KCGS Framework

In order to express a rich knowledge set that includes environment, contingencies,
resources, possible actions and much more, we need a framework that allows us
to represent knowledge in many facets or dimensions. While a cognitive rational
agent uses all this knowledge to compose its immediate action, it is very difficult
as a modeler to construct this knowledge-set if there is only one dimension. For a
multi-dimensional and multi-resolutional knowledge representation, the knowledge
framework must itself allow constructions of this kind of representation. Ontology,
in technical terms is a graph of nodes and information is presented in the relations
that exist between these nodes. Of course, it is a great step as the knowledge can
now be presented in associative terms, more like a semantic network. It is now more
amenable to data engineering efforts but it is essentially flat and not suitable for
piecewise construction or layered methodologies for better manageability. The SES
formal knowledge representation mechanism with its set of axioms and rules helps
develop an ontology that can be constructed and deconstructed in piecewise manner
through SES aspects and specializations. The latest work in SES ontology domain
is an evidence of such efforts [43].

We have shown in our narrative earlier how an agent can have its description in
multiple aspects and specializations. Such aspects and specialization can be added
or removed incrementally and intuitively without changing other facets of the sys-
tem and still understandable by the common modeler. In other words, the modeler
is not overwhelmed by the influx of new knowledge as it builds upon the existing
ones. This is important because in large systems, large knowledge-set often results
in ‘information paralysis’ at the modeler end. Such aspects and specializations give
ontology a multi-resolutional capability and can be called upon at real-time execu-
tion of the system. Also note here that adding such elements is piecewise isolated
and it is the defined rules that create relationships between different SES elements at
run-time thus managing complexity. It also implies that while the general structure
of the proposed ontology remains intact, it is the defined rules that dictate the asso-
ciation and affordances of the entire system at run-time. These rules then become
dynamic and dictate how the knowledge entities interact. This property of SES is a
major way forward as compared to existing cognitive models where the rules are a
function of the invariant architecture itself and any change in the architecture calls
for major upgrades in the modeling system. The realization of these rules by DEVS

38 Scott A. Douglass and Saurabh Mittal

formalism in a SES modeled system is much easier, manageable and formally veri-
fiable at run-time.

Another advantage of this piecewise construction is partitioning of the expert
knowledge in the domain of interest. It now becomes much more feasible to inte-
grate the expert knowledge of other cognitive scientists as aspects of such ontology.
Therefore, we attempt to construct and open the proposed Cognitive Domain On-
tology for further input and contributions from the community at-large. Once the
structure of these aspects is laid out, it is easier to define and modify rules that
related different aspects of the ontology.

5.1 Putting CS2F in the KCGS perspective

This chapter describes the CS2F framework in order to illustrate how artificial sys-
tems producing artificial phenomena can be modeled and simulated. The framework
combines aspects of SES theory, DEVS-based general systems theory, cognitive
architectures (ACT-R), and DSL development using meta-modeling to change the
way artificial systems are formally specified and simulated. The presentation of the
CS2F framework and example agents has been tailored to the objective of high-
lighting how ontology, epistemology, and teleology play roles in the realization of
autonomous models and agents in the framework. The framework is significantly
more than just a set of net-centric applications capable of executing a set of new
DSLs though. This section will describe how CS2F is an instance of a larger KCGS
framework.

The KCGS framework is based on three major areas with formal SES theory at
their centers:

I Ontology and data representation.
II Knowledge engineering and parallel distributed computation search mecha-

nisms.
III DEVS Unified Process.

I deals with knowledge representation and how data interoperability is achieved
between different ontologies using SES foundational framework. In its current state,
basic programmatic pruning mechanisms are used. II deals with the entire knowl-
edge engineering and data-mining aspect of executing the pruning process that
transform data into information. This computational process has to align with the
AI-based search mechanisms, and real-time execution capabilities that will lead to
formal SES-based pruned SESs. Finally, III takes the formal PESs and using the
DEVS M&S technology, provides the requirement traceability, platform indepen-
dent M&S, Verification and Validation and various other capabilities such as SOA
execution, and system component descriptions in DEVS Unified Process.

The capabilities of the KCGS framework as realized in CS2F allow us to specify
many kinds of domain models and take the executing real models to live netcentric
systems. A framework for modeling and simulation of the artificial must have these

A Framework for Modeling and Simulation of the Artificial 39

basic capabilities to incorporate large-scale heterogeneous systems. Table 12 lists
some of the requirements of such a framework and Fig. 20 shows how CS2F and
the larger KCGS framework address these requirements.

Table 12 Mapping requirements for M&S Framework for the Artificial with CS2F and KCGS
components

Framework Requirements Technical Foundation CS2F Component KCGS Component
Based on General Systems
Theory

DEVS System Theory DEVS Unified Pro-
cess

Facilitate model-based devel-
opment and engineering

DEVS M&S Framework,
SES Theory

CDO SES Theory

Scalable and component-
based

DEVS M&S Framework BM, CDO DEVSML 2.0,
DEVS Unified
Process

Manage Hierarchy and ab-
stractions

DEVS Systems Theory BM, CDO DEVS Unified Pro-
cess

Interoperable across imple-
mentation platforms

DEVS M&S Framework DEVSML 2.0

Formal specification DEVS M&S Framework BM, CDO, DM DEVS Unified Pro-
cess, SES Theory

Domain and platform neutral DEVS Systems Theory,
SES Theory

CDO Ontology and
Knowledge Repre-
sentation

Agile and persistent DEVS Systems Theory,
SES Theory

CDO, DM, BM DEVS Unified Pro-
cess, SES Theory

Interface with AI knowledge
engineering methodologies

SES Pruning CDO Pruning SES Theory, Data
Mining, Con-
straint Satisfaction
Problem (CSP)

Fig. 20 also shows how different disciplines interact together and interface with
the formal SES theoretical framework. CS2F/DM is a DSL that formally captures
declarative knowledge in ontologies. CS2F/BM interfaces with DEVSML 2.0 stack
through various transformations. CS2F/CDO works at the intersection of SES the-
ory, constraint satisfaction problems and various other knowledge engineering mea-
sures as overlaid on SES theoretical framework. The DEVS Unified Process is a
superset that incorporates formal DEVS System theory, platform transparent M&S
layered framework called as DEVSML 2.0, requirements engineering at the inter-
section with formal domain ontology representations using SES and other methods.

Ultimately, the solution we are looking for is an ontological framework that lends
itself seamlessly into the simulation-based component modeling framework. Fig. 21
presents the meta-meta-model of an autonomous system. It formally captures real-
world facets like environment and resources and agent-based facets like goals and
behavior. Constraints play a dual role in an Autonomous System’s ontology [19].
There are two types of constraints. Type I constraints are physics based (hard truths)
and Type II constraints are situation-based. While Type I constraints are hard con-
straints, the Type II constraints are soft constraints that are dynamic. The Type II

40 Scott A. Douglass and Saurabh Mittal

constraints are the ones that are responsible for contingency based behavior and
situated behavior. The pruning process will work on these Type II constraints to
generate a CDO that is ‘situated’.

Fig. 20 Putting CS2F in
perspective of Knowledge-
based Contingency-driven
Generative Sytems framework

Fig. 21 Meta-meta-model for an Autonomous System

Earlier research demonstrated that SES, rule-based search processes, and con-
ventional simulation can be used to capture, search through, and evaluate system
configuration spaces. These efforts demonstrated how a rule-based search or SES
pruning process can derive system configurations that meet the design objectives
explicit in the SES. Current research efforts have demonstrated that SES can capture
domains other than physical system design spaces. The KCGS framework described
in this chapter combines current and previous patterns of SES use in modeling and
simulation by: (1) using CDOs to represent behavior configuration spaces consist-

A Framework for Modeling and Simulation of the Artificial 41

ing of agents (beliefs, goals, behavioral constraints) and situational contingencies
(task requirements, action affordances, physical constraints); (2) searching through
(pruning) CDOs at runtime in order to generate behaviors that meet the goals and
contingencies; and (3) executing cognitive agents employing CDOs in larger M&S
framework such as DEVS Unified Process [18]. Future work will refine the KCGS
framework and explore the relationships between declarative, procedural, and do-
main knowledge in a formal modeling and simulation framework founded on the
DEVS [46] Unified Process [18, 27]. Future work will also explore how large-scale
autonomous (artificial) models and agents can be integrated into systems of systems
and Human-in-loop solutions.

6 Concluding Remarks

The cognitive system specification framework (CS2F) is a composition of DSLs
tailored to the needs of cognitive modelers. The abstract syntaxes of two of the
DSLs composed in CS2F (CS2F/DM and CS2F/BM) are strongly influenced by the
ACT-R cognitive architecture [1,2]. The abstract syntax of CS2F/CDO is influenced
by System Entity Structure (SES) theory [43]. The concrete syntaxes of CS2F/DM
and CS2F/BM are designed so that a modeler with experience in ACT-R can specify
behaviorally equivalent models at a high level of abstraction. The concrete syntax
of CS2F/CDO is designed to allow modelers to rapidly specify theoretically sound
CDOs regardless of their experience working with SES.

This chapter explored how a new modeling and simulation framework can al-
low a modeler to: (1) formally represent actions as behavior models in CS2F/BM;
(2) formally represent goals and contingencies as cognitive domain ontologies in
CS2F/CDO; and (3) let autonomous models and agents decide what to do on their
own in situ. The framework consists of three major net-centric components each
representing and processing a unique type of agent knowledge:

soaDM an Erlang/OTP based associative memory through which mod-
els and agents can store and retrieve propositional or declarative
knowledge.

soaCDO a Common Lisp based service through which models and agents
can represent and process cognitive domain ontologies formally
capturing the entities, constraints, and relationships constituting
the requirements of the tasks they are performing.

DEVSML Stack a DEVS/Java based integration service through which models
and agents can represent and process behavior models formally
capturing actions they can perform.

Models and agents technically realized in the KCGS framework do not use pre-
defined rules and knowledge that interleave state and process descriptions to act in
anticipated circumstances. Instead, they are persistent computational entities that
use CDO search/pruning in situ to re-configure their own behavioral repertoires

42 Scott A. Douglass and Saurabh Mittal

to match their objectives and goals to their contingencies. The generative frame-
work allows modelers to specify behavior above the level of the CS2F/BM behavior
model. The 3 components of the generative framework discussed above are com-
putationally realized in the modeling and simulation infrastructure developing in
the LSCM initiative [21]. The DEVSML Stack translates behavior models specified
in CS2F/BM into DEVS coupled models which are then executed in a net-centric
realization of DEVS [20].The generative framework represents a significant mod-
eling capability advancement that will add to, and leverage, the DSLs and M&S
capabilities being researched and developed in the LSCM initiative.

6.1 Roles of Ontology, Epistemology, and Teleology in Artificial
Systems

The KCGS framework discussed in this chapter supports the modeling and simula-
tion of autonomous agents. These agents base their behaviors on their contingencies
not just pre-specified rules. Autonomous agents modeled in the KCGS framework
use three knowledge representations to gain autonomy: (1) procedural knowledge;
(2) declarative knowledge; and (3) domain knowledge. These three knowledge rep-
resentations allow KCGS framework users to model and simulate agents that exploit
ontologies, produce artificial behaviors that are teleological, and refine their knowl-
edge over time. The framework’s effectiveness can be attributed to its exploitation
of:

Ontology Declarative and domain knowledge are represented using ontolo-
gies. Declarative knowledge is described in OWL ontologies, trans-
lated into semantic networks, and processed by agents in a soaDM
associative memory component of the framework. Domain knowl-
edge is described in CDOs, translated into constraint networks,
and processed by agents in a soaCDO component.

Teleology Agents use CDOs to determine what they should do in situ. Agents
do this by mapping characteristics of their contingencies into
CDOs and propagating them through: (1) constraints reflecting
the aspects, specializations, and multi-aspects characterizing the
CDOs; (2) domain constraints specified in a CS2F/CDO constraint
language. When CDOs represent spaces of behaviors that achieve
a behavioral design objective (goal), they allow an agent to gener-
ate goal-pursuing behavior in complex and dynamic environments.

Epistemology Agents use CDOs to infer abductively from observed evidence to
likely explanations. Under these circumstances, agents relate ob-
servations (in the form of asserted evidence) to what they know
about the world (in the form of a CDO). By selecting actions that
elicit additional evidence from the environment, agents can refine
their situational knowledge.

A Framework for Modeling and Simulation of the Artificial 43

Appendix 1: Complex operators in the CS2F/CDO constraint
language

Operator Meaning Example

assert! Set value of
a constraint
variable

(assert!
(equalv (v@ (weight) kg) 100))

andv Conjunction with
variables

(andv (equale (e@ aspect sport)
golf)

(equale (e@ aspect size)
small))

orv Disjunction with
variables

(orv (equale (e@ aspect size)
small))

(equale (e@ aspect size)
large))

notv Negation with
variables

(notv (equale (e@ ensemble)
soloist))

ifv Implication with
variables

(ifv (equale (e@ ensemble)
soloist)

(notv (equale (e@ style)
symphonic)))

fail Failure with
backtracking

(ifv
(andv (equale (e@ ensemble)

soloist)
(equale (e@ style)

symphonic))
(assert! (fail)))

a-member-of Non-deterministic
selection from a
list [creates
choice point]

(assert! v (a-member-of ’(a s d f)))

either Non-deterministic
selection
from arguments
[creates choice
point]

(either small medium large)

an-integer-above
an-integer-between
an-integer-below

Define integer
ranges

(equalv v (an-integer-above 10))
(assert!
(equalv (v@ (weight) kg)

(an-integer-between 75 105)))

a-real-above
a-real-between
a-real-below

Define real
ranges

(equalv pi
(a-real-between 3.0 4.0))

(ifv (notv (equalv pi
3.141592653589793))

(fail))
>v, >=v, <v, <=v Comparison

functions
that accept
constraint
variables

(ifv (<=v v 10) (fail))

44 Scott A. Douglass and Saurabh Mittal

Appendix 2: Example constraints that refine the possible space of
musical performance

Constraint Implicative Normal Form

(define-constraint m4
:musical-performance
(and (==> (equale (e@ style) jazz)

(or (equale (e@ ensemble)
small-group)

(equale (e@ ensemble)
orchestra)))

(==> (equale (e@ style) folk)
(not (equale (e@ ensemble)

orchestra)))
(==> (equale (e@ style) symphonic)

(not
(or (equale (e@ ensemble)

soloist)
(equale (e@ ensemble)

small-group))))))

(orv
(ifv (equale (e@ style) jazz)

(assert!
(orv (equale (e@ ensemble)

orchestra)
(equale (e@ ensemble)

small-group))))
(ifv (andv (equale (e@ ensemble)

orchestra)
(equale (e@ style)

folk))
(assert! (fail)))

(ifv (andv (equale (e@ ensemble)
soloist)

(equale (e@ style)
symphonic))

(assert! (fail)))
(ifv (andv (equale (e@ ensemble)

small-group)
(equale (e@ style)

symphonic))
(assert! (fail))))

Appendix 3: Declarative knowledge available to the autonomous
agent through soaDM

SemNet Node Object Properties Data Properties

home_room

type = origin
connected_to = room1
connected_to = room2
connected_to = room3

name = "home_room"

room1
type = destination
connected_to = home_room

name = "room1"

room2
type = destination
connected_to = home_room

name = "room2"

room3
type = destination
connected_to = home_room

name = "room3"

door1

type = door
way_in = room1
way_in = home_room
way_out = home_room
way_out = room1

name = "door1"

door2

type = door
way_in = room2
way_in = home_room
way_out = home_room
way_out = room2

name = "door2"

door3

type = door
way_in = room3
way_in = home_room
way_out = home_room
way_out = room3

name = "door3"

trigger_platec trigger_platec

name = "trigger_plate"
location_x = 3653.0
location_y = 1975.0
location_z = -197.65

A Framework for Modeling and Simulation of the Artificial 45

References

1. Anderson, J.: How can the human mind occur in the physical universe?, vol. 3. Oxford Uni-
versity Press, USA (2007)

2. Anderson, J., Bothell, D., Byrne, M., Douglass, S., Lebiere, C., Qin, Y.: An integrated theory
of the mind. Psychological Review 111(4), 1036 (2004)

3. Anderson, J., Matessa, M.: An overview of the epic architecture for cognition and performance
with application to human-computer interaction. Human-computer interaction 12(4), 391–438
(1997)

4. Cesarini, F., Thompson, S.: Erlang programming. O’Reilly Media (2009)
5. Douglass, S., Mittal, S.: Using domain specific languages to improve scale and integration of

cognitive models. In: Proceedings of the Behavior Representation in Modeling and Simulation
Conference. Utah, USA (2011)

6. Douglass, S., Myers, C.: Concurrent knowledge activation calculation in large declarative
memories. In: Proceedings of the 10th International Conference on Cognitive Modeling, pp.
55–60 (2010)

7. Fann, K.: Peirce’s theory of abduction. Martinus Nijhoff La Haya (1970)
8. Gonzalez, C., Lerch, J.F., Lebiere, C.: Instance-based learning in dynamic decision making.

Cognitive Science 27(4), 591–635 (2003)
9. Hwang, M., Zeigler, B.: Reachability graph of Finite and Deterministic DEVS networks. IEEE

Transactions on Automation Science and Engineering 6(3), 468–478 (2009)
10. Keene, S.: Object-oriented programming in Common Lisp: A programmers guide to CLOS.

Adison-Wesley (1989)
11. Kim, T., Lee, C., Christensen, E., Zeigler, B.: System entity structuring and model base man-

agement. Systems, Man and Cybernetics, IEEE Transactions on 20(5), 1013–1024 (1990)
12. Klein, G., Phillips, J., Rail, E., Peluso, D.: A data-frame theory of sensemaking. In: Expertise

out of context: proceedings of the sixth International Conference on Naturalistic Decision
Making, p. 113. Lawrence Erlbaum (2007)

13. Ledeczi, A., Maroti, M., Bakay, A., Karsai, G., Garrett, J., Thomason, C., Nordstrom, G.,
Sprinkle, J., Volgyesi, P.: The generic modeling environment. In: Workshop on Intelligent
Signal Processing, Budapest, Hungary, vol. 17 (2001)

14. Ledeczi, A., Volgyesi, P., Karsai, G.: Metamodel composition in the Generic Modeling Envi-
ronment. In: Comm. at workshop on Adaptive Object-Models and Metamodeling Techniques,
Ecoop, vol. 1 (2001)

15. Lee, H., Zeigler, B.: SES-based ontological process for high level information fusion. In:
Proceedings of the 2010 Spring Simulation Multiconference, p. 129. ACM (2010)

16. Lee, H., Zeigler, B.: System entity structure ontological data fusion process integrated with
C2 systems. The Journal of Defense Modeling and Simulation: Applications, Methodology,
Technology 7(4), 206–225 (2010)

17. McGuinness, D., Van Harmelen, F., et al.: OWL web ontology language overview. W3C
recommendation 10, 2004–03 (2004)

18. Mittal, S.: DEVS Unified Process for integrated development and testing of Service Oriented
Architectures. Ph.D. thesis, Iniversity of Arizona (2007)

19. Mittal, S.: Net-centric cognitive architecture using DEVS Unified Process. In: Researching
and Developing Persistent and Generative Cognitive Models Workshop. Scottsdale, AZ (2010)

20. Mittal, S., Douglass, S.: From domain specific languages to DEVS components: application
to cognitive m&s. In: Proceedings of the 2011 Symposium on Theory of Modeling & Sim-
ulation: DEVS Integrative M&S Symposium, pp. 256–265. Society for Computer Simulation
International (2011)

21. Mittal, S., Douglass, S.: Net-centric ACT-R-based cognitive architecture with DEVS Unified
Process. In: Proceedings of the 2011 Symposium on Theory of Modeling & Simulation:
DEVS Integrative M&S Symposium, pp. 34–44. Society for Computer Simulation Interna-
tional (2011)

46 Scott A. Douglass and Saurabh Mittal

22. Mittal, S., Douglass, S.: DEVSML 2.0: The language and the stack. In: In Proceedings of the
Spring Simulation 2012 Multiconference. Orlando, FL (2012)

23. Mittal, S., Risco-Martin, J.: Netcentric System of Systems Engineering with DEVS Unified
Process. CRC Press (2012)

24. Mittal, S., Risco-Martin, J., Zeigler, B.: DEVS-based simulation web services for net-centric
T&E. In: Proceedings of the 2007 summer computer simulation conference, pp. 357–366.
Society for Computer Simulation International (2007)

25. Mittal, S., Risco-Martı́n, J., Zeigler, B.: DEVSML: automating DEVS execution over SOA to-
wards transparent simulators. In: Proceedings of the 2007 spring simulation multiconference-
Volume 2, pp. 287–295. Society for Computer Simulation International (2007)

26. Mittal, S., Risco-Martı́n, J., Zeigler, B.: DEVS/SOA: A cross-platform framework for net-
centric modeling and simulation in DEVS Unified Process. Simulation 85(7), 419–450 (2009)

27. Mittal, S., Zeigler, B., Risco-Martin, J.: Implementation of formal standard for interoperability
in M&S/systems of systems integration with DEVS/SOA. International Journal of Command
and Control 2 (2009)

28. Molnár, Z., Balasubramanian, D., Lédeczi, A.: An introduction to the Generic Modeling En-
vironment. In: Proceedings of the TOOLS Europe 2007 Workshop on Model-Driven Devel-
opment Tool Implementers Forum. Zurich, Switzerland (2007)

29. Newell, A.: Unified theories of cognition, vol. 187. Harvard Univ Pr (1994)
30. Risco-Martı́n, J., Moreno, A., Cruz, J., Aranda, J.: Interoperability between DEVS and non-

DEVS models using DEVS/SOA. In: Proceedings of the 2009 Spring Simulation Multicon-
ference on ZZZ, p. 147. Society for Computer Simulation International (2009)

31. Rozenblit, J., Hu, J., Kim, T., Zeigler, B.: Knowledge-based design and simulation environ-
ment (KBDSE): Foundational concepts and implementation. Journal of the Operational Re-
search Society pp. 475–489 (1990)

32. Rozenblit, J., Huang, Y.: Rule-based generation of model structures in multifaceted modeling
and system design. ORSA Journal on Computing 3(4), 330–344 (1991)

33. Rozenblit, J., Zeigler, B.: Representing and constructing system specifications using the sys-
tem entity structure concepts. In: Proceedings of the 25th conference on Winter simulation,
pp. 604–611. ACM (1993)

34. Schvaneveldt, R., Cohen, T.: Abductive reasoning and similarity: Some computational tools.
Computer-Based Diagnostics and Systematic Analysis of Knowledge pp. 189–211 (2010)

35. Simon, H.: The sciences of the artificial, 2nd edn. the MIT Press (1981)
36. Siskind, J., McAllester, D.: Screamer: A portable efficient implementation of nondeterministic

common lisp. Ircs technical reports series (1993)
37. Steele, G.: Common LISP: the language, 2nd edn. Digital Press (1990)
38. Sztipanovits, J., Karsai, G.: Model-integrated computing. Computer 30(4), 110–111 (1997)
39. Wainer, G., Al-Zoubi, K., Dalle, O., Hill, D., Mittal, S., Risco-Martin, J., Sarjoughian, H.,

Touraille, L., Traore, M., Zeigler, B.: Discrete Event Modeling and Simulation: Theory and
Applications, chap. DEVS Standardization: Ideas, Trends and Future (2010)

40. White, S., Sleeman, D.: Constraint handling in common lisp. Department of Computing Sci-
ence Technical Report AUCS/TR9805, University of Aberdeen (1998)

41. Wilson, M.: Six views of embodied cognition. Psychonomic Bulletin & Review 9(4), 625–636
(2002)

42. Zeigler, B., Chi, S.: Model-based architecture concepts for autonomous systems design and
simulation. In: An introduction to intelligent and autonomous control, pp. 57–78. Kluwer
Academic Publishers (1993)

43. Zeigler, B., Hammonds, P.: Modeling & simulation-based data engineering: introducing prag-
matics into ontologies for net-centric information exchange. Academic Press (2007)

44. Zeigler, B., Luh, C., Kim, T.: Model base management for multifacetted systems. ACM Trans-
actions on Modeling and Computer Simulation (TOMACS) 1(3), 195–218 (1991)

45. Zeigler, B., Mittal, S., Hu, X.: Towards a formal standard for interoperability in m&s/system
of systems integration. In: GMU-AFCEA Symposium on Critical Issues in C4I (2008)

46. Zeigler, B., Praehofer, H., Kim, T.: Theory of modeling and simulation: Integrating discrete
event and continuous complex dynamic systems, 2nd edition edn. Academic Press (2000)

